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Abstract. We report new experimental results obtained on the insulating spin glass CdCr1.7In0.3S4. Our
experimental setup allows a quantitative comparison between the thermo-remanent magnetisation and the
autocorrelation of spontaneous fluctuations of magnetisation, yielding a complete determination of the
fluctuation-dissipation relation. The dynamics can be studied both in the quasi-equilibrium regime, where
the fluctuation-dissipation theorem holds, and in the deeply ageing regime. The limit of separation of
time-scales, as used in analytical calculations, can be approached by use of a scaling procedure.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 75.50.Lk Spin glasses and other
random magnets – 07.20.Dt Thermometers – 07.55.Jg Magnetometers for susceptibility, magnetic moment,
and magnetization measurements

1 Introduction

Despite their large diversity, glassy systems have many
dynamical properties in common. In particular, a similar
ageing behaviour can be observed in polymers, gelatins, or
spin glasses [1,2]. Stationarity cannot be reached in these
systems in experimental, or even in geological times: they
always remain out-of-equilibrium, even when not submit-
ted to any external perturbation.

During a long period, the theoretical activity was con-
centrated on the study of the statics of glassy models.
With the nineties, began the time of theoretical dynami-
cal studies, first by numerical simulations, and then by an-
alytical results on specific mean-field models [3–5]. From
these studies, new concepts appeared, generalising the well
known Fluctuation-Dissipation Theorem (FDT), which
holds for equilibrated systems [6,7].

In equilibrated systems with time translational invari-
ance (TTI), FDT can be used to measure the temperature
in an absolute way:

kBT =
∂twC(t − tw)

R(t − tw)
. (1)

In this relation C(t − tw) is the autocorrelation function
of an observable (for instance the magnetisation M(t))
between two times, t and tw, and R(t − tw) the response
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function associated with a pulse of the conjugate field at
time tw, h(t) = δ(t − tw). These quantities are two times
quantities, but, as the system is TTI, they depend only
on the time difference t − tw.

Spin glasses never reach equilibrium, and the time au-
tocorrelation and the response function can not be reduced
to one-time quantities. Therefore, the temperature cannot
be defined on the basis of usual concepts. Nevertheless, it
has been shown that, in specific models with low rate of
entropy production, and using a generalisation of the FDT
relation, a quantity that behaves like a temperature could
be defined [5], the “effective temperature”. The effective
temperature for one given value of C(tw , t) = C can be
defined as:

kBTeff = lim
tw→∞

C(tw,t)=C

∂twC(tw, t)
R(tw, t)

. (2)

The only difference between relations 1 and 2 con-
cerns the domains of validity. The generalised fluctuation-
dissipation relation is valid for stationary systems (simply,
C and R depend only on t − tw and Teff = T ), and it is
also valid for every systems in the limit of small rate of
entropy production. Glassy systems, in the limit of long
waiting time are such systems. Some experiments have
been set up to measure this effective temperature using
frequency measurements in glassy systems [8–10].

To understand the meaning of the time limit in equa-
tion (2), it is helpful to refer to the so-called “Weak Ergod-
icity Breaking” (WEB) concept [11]. WEB was introduced
first in the study of the dynamics of a random trap model
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very similar to the Random Energy Model (REM) [12].
According to WEB scenario, two different contributions
can be identified in the dynamics: a stationary one, corre-
sponding to usual equilibrium dynamics in a metastable
state (and then not relevant for ageing studies), and a sec-
ond one, describing the long term evolution between many
metastable states, which features the ageing properties.

This approach agrees well with an experimental fact: in
glassy systems, the relaxation function can be decomposed
in two distinct contributions [13]:
– The first one is independent of the age of the sys-

tem (it depends only on the observation time t − tw),
and governs the dynamics for the shorter observation
times. Many results in spin glasses showed that the
most appropriate form for the decay is a power law
with a small exponent, α ≈ 0.1. This behaviour is con-
sistent with the quasi-equilibrium noise power spec-
trum, which varies as 1/f1−α. As this part is station-
ary, it should behave as in the equilibrated system:
FDT should hold between the stationary part of the
relaxation and the corresponding part of the autocor-
relation, as shown in the Section 4.1.

– The second one is non-stationary and decays approx-
imately as a stretched exponential of the ratio t/tw.
This means that if tw → 0, this part tends to be
instantaneous, and if tw → ∞, it becomes infinitely
slow. This contribution can be rescaled using a re-
parametrised (effective) time λ(t). When plotted ver-
sus the effective time difference, all the non-stationary
contributions measured with different waiting times
merge very satisfactorily in one curve [13], showing
that the same kind of dynamics persists along the
whole experimental time range, as in Figure 6. Here,
FDT cannot be of any help to link response and sta-
tionary parts.
The limit in the definition of the effective tempera-

ture (Eq. (2)) means that the two contributions must be
well separated, i.e., the stationary dynamics must become
negligible before the ageing one starts to be effective. This
situation is referred as the “time-scale separation limit”,
and the evolution of any dynamic quantity should present
a plateau (in log-scale of time) separating the stationary
dynamics at short times from the ageing one. Experimen-
tally, this clear separation of the two contributions is not
observed.

In Section 2, a setup allowing the measurement of mag-
netic fluctuations and the response to the conjugate field
will be described, and it will be shown that it allows an
absolute measurement of the temperature, following equa-
tion (1). In Section 3, the experimental procedure to study
the ageing regime of a spin-glass using this tool is de-
scribed. The results allow to check the validity of the ef-
fective temperature concept, following equation (2), and
analysed according to various models in Section 4.

2 An FDT-based thermometer

In this section, a new experimental setup, designed to mea-
sure quantitatively the relations between fluctuation and

Fig. 1. Schematic of the basic circuit for noise measurement.
In order to maximise the coupling factor between the sample
and the Pick Up coil, a long cylinder (4 cm long, 4 mm wide)
is used. The third order gradiometer being 2.2 cm long 5.5 mm
wide, this size insures almost the best possible coupling factor,
as any contact between the PU-coil and the sample must be
avoid to allow the temperature regulation.

response in magnetic systems will be described. It will be
shown that this setup works in fact as an absolute ther-
mometer.

Using FDT, expressed as in equation (1) for instance,
any system allowing a quantitative comparison between
thermal spontaneous fluctuations of an observable and the
response to its conjugate field allows an absolute determi-
nation of the temperature. The new experimental setup
developed for the studies of spin-glasses is first of all an ab-
solute thermometer, which should allow a determination
of the thermodynamic temperature of any equilibrated
magnetic system down to very low temperature. In a setup
completely dedicated to low temperature measurements,
the lowest temperature to be measurable should be below
the millikelvin range.

2.1 Noise measurements

The protocol of spontaneous magnetic fluctuations mea-
surements is quite simple: a thermalised sample is intro-
duced in a pick-up coil (PU), itself part of a superconduc-
tive circuit involving the input coil of a SQUID-based flux
detector (see Fig. 1).

Materially, the sample of cylindrical shape with diam-
eter and length 5 mm and 40 mm respectively is contained
in a cylindrical vacuum jacket, part of a 4He cryogenic
equipment. The PU is wound on the jacket. The sam-
ple itself is contained in a cylinder made of copper coil-
foil whose upper part is a copper sink with thermometer
resistor and heater resistor, thermally connected to the
4He bath by a flexible copper link, thus allowing tempera-
ture regulation above 4.2 K. The vacuum system involves
a charcoal pump thermally connected to the 4He through
a thermal impedance. When cold, it insures good thermal
insulation; if heated, it allows to inject 4He exchange gas
thus thermally connecting the whole sample to the helium
bath temperature.
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The difficulties of the measurement lie in the extreme
weakness of the signal of the fluctuations and the strong
response to external excitations: the typical amplitude of
magnetic fluctuations in our macroscopic CdCr1.7In0.3S4

sample corresponds to the response to a magnetic field
about 10−7 G. Several magnetic shields (µ-metal and su-
perconductive) are used in order to decrease the residual
field at a level of order 1 mG, and to stabilise it. Further-
more, the PU is built with a third order gradiometer ge-
ometry, which strongly reduces the sensitivity to the time
variations of the ambient fields. In such conditions, and be-
cause of the extreme sensibility of SQUID measurements,
a satisfactory signal/noise ratio can be easily obtained at
short time-scales, corresponding to correlation measure-
ments with time differences of few seconds. In order to
study a glassy system in the deep ageing regime, such
time-scales are not enough: one needs to measure the time
autocorrelation with time differences up to several thou-
sand seconds. To suppress spurious drifts of the measuring
chain, further precautions are then needed: stabilisation of
the helium bath to avoid drifts of the SQUIDS sensor, sta-
bilisation of the room temperature to avoid drifts in the
ambient temperature electronics, etc.

It should be emphasised that the use of the third or-
der gradiometer in this experiment is quite different from
the most common use. Usually, gradiometers are used in
magnetometers where the sample is small compared to
the gradiometer size, and is placed in a non-symmetric
position; an homogeneous field is established, and the un-
balanced flux due to the magnetisation of the sample is
recorded.

2.2 Response measurements

Already several years ago, a comparative study of the mag-
netic fluctuations and the conventional magnetic response
was done using a setup similar to the one schematically
described in Figure 1 [14]. This comparison could not be
made quantitative with a satisfactory accuracy: the cou-
pling factor of the sample to the detection system depends
on the PU geometry and is quite different in the noise
setup and in a classical magnetometer with homogeneous
field. In order to be able to compare quantitatively the
results of both kinds of experiment, one has to eliminate
the effect of this geometrical factor in the comparison.
This can be done only if the coupling factor is the same
in both experiments. The way to achieve this can be illus-
trated very simply. The fluctuations of the magnetisation
are recorded through a PU coil with a given geometry.
According to the reciprocity theorem, the flux fluctua-
tions induced in the coil are the fluctuations of the scalar
product of local magnetisation MdV by the local field h
produced by a unit of current flowing in the PU coil:

Φ =
∫

sample

M · hdV.

In our setup, the measured fluctuating observable is
the flux in the PU-coil. The conjugate quantity of this

Fig. 2. Schematic of the FDT circuits. (a) Basic FDT circuit.
(b) The bridge configuration used.

flux is the current flowing through the coil, and thus, the
magnetic field conjugate of the sample magnetic moment
is the field produced by the PU-coil itself. If this field is
used as exciting field, then the fluctuation-dissipation re-
lation should remain the same for the macroscopic quanti-
ties as for the microscopic ones. This is strongly different
from the situation where one tries to compare the results
of noise measurements to the results of classical response
measurements done in an homogeneous field: then the cou-
pling factor in both measurements has to be evaluated. A
way to use the PU-coil as field generator is the following.
A small coil coupled to an excitation winding with mutual
inductance M is inserted in the basic superconductive cir-
cuit (see Fig. 2a).

2.3 Absolute thermometer

2.3.1 Fluctuation dissipation relation

Here we will show that, for any given equilibrated system,
the validity of FDT on microscopic quantities results in
the validity of an “effective FDT” on measured quanti-
ties. The factor K which appears is setup dependent, but
sample independent.

When a magnetic sample is inserted into the PU coil,
by the reciprocity theorem, a moment mi at position ri

induces in the coil a flux δΦ = mihi. Therefore, the flux
in the coil due to the sample is given by

Φ =
∑

i

∑
µ

mµ
i hµ

i , (3)

where µ indexes the spin components: µ = {x, y, z} for
Heisenberg spins, µ = {z} for Ising ones, etc. We suppose
that the medium is homogeneous, the components of the
fluctuations are statistically independent and their spatial
correlations are much smaller than the scale of the PU:〈

mµ
i (t′)mν

j (t)
〉

= 〈m(t′)m(t)〉 δijδµν . (4)
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Then, the flux autocorrelation is given by

〈Φ(t′)Φ(t)〉 =
∑

µ

∑
i

hµ
i
2 〈m(t′)m(t)〉 = QC(t′, t). (5)

The flux autocorrelation in the PU is thus the averaged
one site moment autocorrelation per degree of freedom
C(t′, t), multiplied by the coupling factor Q determined
by the geometries of the PU field and of the sample.

On the other hand, the impulse response function of
one moment in the sample is given by

Rµν
ij (t′, t) =

∂mν
j

∂hµ
i

= R(t′, t)δijδµν , (6)

where R(t′, t) is the averaged one site response function
of the sample. If a current i is flowing in the coil, the flux
on the coil due to the polarisation of the sample reads

Φ(t) =
∑

i

∑
µ

hµ
i
2
∫ t

R(t′, t)i(t′)dt′. (7)

Thus, the response function of the flux due to the sample
in the PU circuit is

RΦ(t′, t) = QR(t′, t). (8)

The same coupling factor Q =
∑

i

∑
µ hµ

i
2 determines the

values of correlation and response of the flux due to the
sample.

Note that the term h is the value of the internal field
in the sample, due to a unit of current flowing in the coil.
Therefore, Q corresponds to the same demagnetising field
conditions in both measurements. Actually, Q is time de-
pendent, since the internal field is h = h0µ(t′, t) where
h0 is the field term generated by the coil in vacuum and
µ(t′, t) is the time dependent sample permeability, but the
important point is that Q(t′, t) is exactly the same in both
experiments.

The above derivation is done in the context of a mag-
netic system, showing that the measured quantities rep-
resent those used in theoretical work, in which the single-
site autocorrelation and response functions are computed,
and averaged over the sample. Incidentally, an equivalent
derivation could be done for any system with magnetic
response, for instance the eddy currents in a conductor,
with the same result: the coupling factors are the same in
the fluctuations and the response measurements.

In the basic measurement circuit, Figure 2a, the total
flux impulse response of the circuit to the current i(t′)
flowing in it is

RL(t′, t) =
∑

Lδ(t − t′) + Q(t′, t)R(t′, t), (9)

where
∑

L is the total self inductance of the circuit. Flux
conservation in the (SC) PU circuit leads to

Φexc(t) +
∫ t

−∞
RL(t′, t)i(t′)dt′ = 0, (10)

where Φexc(t) = MI(t) is obtained by injecting a current
I(t) in the excitation winding. The conjugate variable of
the circuit current i is the flux Φexc injected by the ex-
citation coil. In the case of an ergodic sample, it is easy
to show that, once FDT applies to the fluctuations and
response of the flux induced in the PU, it applies also to
the fluctuations and response of the current flowing in the
circuit. Thus,

σi(t − t′) =
1

kBT
Ci(t − t′). (11)

The SQUID gain is G = VS/i. Thus, if a current I(t) =
I0(1−θ(t)) is injected in the excitation coil, the relaxation
of the SQUID output voltage is related to the autocorre-
lation function of its fluctuations by:

VS(t) =
1

KT
〈VS(0)VS(t)〉 . (12)

where K = G
MI0

kB . The system is an absolute (primary)
thermometer since, by measuring both the response volt-
age to an excitation current step and the autocorrelation
of the voltage free fluctuations, it allows a determination
of the temperature whose precision (once a sample with
large signal is chosen) depends only on the precision of
the determination of the experimental parameters I0, G
and M .

The main drawback of the elementary measuring cir-
cuit depicted above is that the response to an excitation
step involves the instantaneous response of the total self
inductance of the circuit (first term in the right hand side
— R.H.S — of Eq. (9)). In our case, both the susceptibil-
ity of the sample and the coupling factor Q are weak. The
quantity to be measured,— the second term in the R.H.S
of equation (9) —, represents a few percent of the first
one. Thus, a bridge configuration as depicted in Figure 2b
has been adopted. Now, the main branch involving the
sample is balanced by an equivalent one without sample.
This second branch is excited oppositely, in such a way
that when the sample is extracted from the PU, there is
no response of the SQUID to an excitation step. When the
sample is placed into the PU, the response of the SQUID
is determined only by the response of the sample. Nev-
ertheless, now, the loop coupling factor of the sample to
the SQUID involves different self inductance terms in both
measurements, and one gets

K =
G

MI0

L0 + 2LS

L0
kB (13)

where L0 and LS are the self inductances of the PU and of
the SQUID input respectively, and the effect of the sample
has been neglected in the value of L0. This adds sources
of error on the calibration since the self inductance values
are difficult to determine precisely.

2.3.2 Calibration

The circuit as described above is a thermometer, allowing
the determination of the temperature, kBT . Nevertheless,
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Fig. 3. Measured relaxation (a) and autocorrelation (b) func-
tion for the copper sample at 4.2 K. (c) FD-plot, relaxation
versus response, the observation time τ = t − tw being used
as parameter: the observed linear behaviour allows calibration
of the system as thermometer, this slope being proportional
to 1/T , independently of the sample. The observed deviation
from the linear behaviour at the shorter times is due to the
effect of the low-pass filtering of the excitation — which does
not affect the correlation measurement.

it involves several home-made coils whose self-inductances
cannot be determined in their experimental environment
without large errors. This dramatically limits the precision
on the determination of the temperature. A calibration
was thus needed. For this, the fluctuations and response
of a high conductivity copper sample were measured in
the setup. This high purity (99, 999%) sample has a very
low residual resistivity at low temperature, obtained by
annealing at high temperature in oxygen atmosphere, thus
reducing the density of magnetic residual impurities. The
sample has a cylinder shape, 5 mm wide and 4 cm long. It
was thermalised at the temperature of the boiling 4He at
normal pressure (4.215 K).

Since this equilibrated system is stationary, one can
use standard Fast Fourier Transform algorithms in or-
der to compute the autocorrelation function from a single
record. The average of the obtained autocorrelation func-
tion over many successive records allows to reduce the
noise level.

The relaxation function is obtained as the response to
a field step at tw, and is only a function of t − tw. As the
system does not have remanent magnetisation (the eddy
currents vanish in a finite time, a few tenth of a second),
the limit value of the response function is zero.

The measured relaxation and autocorrelation of
SQUID voltage are plotted in Figures 3a and b versus
the observation time. The fluctuation-dissipation diagram
(FD-plot) is obtained by plotting the relaxation versus
autocorrelation, using the observation time as parameter,
in Figure 3c . The observed linear behaviour is consistent
with the FDT. As previously shown, the slope between
the relaxation and the response is sample-independent,

and proportional to 1/KT . The measurement on the cop-
per sample, at a well known temperature allows thus to
determine the factor K. From it, we can determine the
temperature of any sample placed in the gradiometer from
the value of the slope of the measured relaxation versus
correlation curve. This can be applied to any equilibrated
system. For glassy systems, it should allow an experimen-
tal determination of the effective temperature.

3 Fluctuation-dissipation relations
in a spin-glass sample

The aim of this work is the study of the fluctuation-
dissipation relation in a spin glass. In this section, we will
emphasise the peculiarities of this measurement, and then
describe the procedure used to make the analysis quanti-
tative as well as the limits of this procedure.

3.1 Sample

The knowledge acquired in previous magnetic noise in-
vestigations on spin glasses was very helpful to choose a
good candidate for the present study. First, eddy currents
in metallic samples produce noise, as in the copper sam-
ple used for calibration. This noise can be measured, but
not directly related to the spin dynamics. In order to avoid
this drawback, an insulating spin glass sample was chosen.

Measurements on CsNiFeF6 have shown that this
compound has a stronger signal, and then a better signal
to noise ratio than any other insulating spin glass [15].
Nevertheless it has a very strong ferromagnetic value of
the average interaction and its behaviour is far from the
“standard” spin glass behaviour.

CdCr2−2xIn2xS4 was also extensively studied experi-
mentally, by classical susceptibility, magnetic noise, neu-
tron scattering [16–19]. In this series of compounds, the
magnetic ions are Cr3+, with low anisotropy. The cou-
pling is ferromagnetic between first neighbours, and anti-
ferromagnetic between the second ones. The substitution
of Cr3+ by the non-magnetic In3+ increases the rela-
tive importance of anti-ferromagnetic coupling as com-
pared to the ferromagnetic one. The random dilution in-
troduces disorder and frustration, the basic ingredients
leading to spin-glasses. In the studies of the spin glass
state, CdCr1.7In0.3S4 is the preferred compound in this
family. The high concentration of Cr3+ allows this sample
to have a strong signal, but it is not high enough to reach
the percolation of the ferromagnetic order. With decreas-
ing temperature, finite sized ferromagnetic cluster forma-
tion is observed. Close to Tg, these clusters are rigid, and
the interaction between them is random, with a weak anti-
ferromagnetic average. This clustering greatly increases
the signal, as the noise power of N = N0/n ferromagnetic
clusters of n spins is

√
n times stronger than the one of

N0 individuals spins.
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Fig. 4. A typical thermal history of the sample for a 4, 500 s
record at 10 K. In inset, detail on the crucial part, the last 3K’s
cooling.

3.2 Experimental details

Glassy systems are not stationary; their dynamics de-
pends on two times, both referred to a crucial event, the
“birth” of the system. In spin glasses, the birth time is
best defined by the time at which the final temperature is
reached, as soon as the end of the cooling procedure is fast
enough [20]. A cooling procedure based only on driving
the sample holder sink temperature would introduces non-
negligible temperature gradients if the cooling or heating
rate is too high. This would lead to a distribution of ages
over the sample. In order to obtain a more homogeneous
temperature, the cooling procedure is as follows:

– first, the temperature is slowly decreased from a ref-
erence temperature Tref above Tg to a temperature
T1 ≈ Tm + 3 K, where Tm is the working temperature;

– then, by heating the charcoal pump, a small amount
of He gas is introduced, allowing a quick and homoge-
neous cooling;

– finally, the charcoal pump heating is switched off and
the vacuum surrounding the sample is restored, allow-
ing the temperature regulation at Tm.

The first step (slow cooling, approx. 0.25 K min−1) does
not introduce severe temperature gradients, as the cool-
ing is slow enough. This step cannot be avoided, as the
fast cooling by exchange gas can only be used to decrease
the sample temperature by few Kelvin without introduc-
ing too strong perturbations in the helium bath. Previ-
ous studies on CdCr2−2xIn2xS4 show that the dynamics
is governed by the second, fast, cooling step, at least on
timescales shorter than 20, 000 s [20]. This second step is
obtained by heating the charcoal pump during few sec-
onds. As the gas surrounds the sample, the resulting cool-
ing is homogeneous. When the heating is stopped, the
charcoal absorbs the gas back, allowing the regulation of
temperature. The amount of gas used and the duration
of heating are adjusted in order to lower the temperature
exactly down to the working temperature. This allows to

cool the sample by 3 K in less than 30 s, keeping the tem-
perature gradient negligible. The birth time is taken as the
instant when the sample temperature reaches Tm+15 mK.
This allows a precise, and reproducible determination of it.

The measurement of the relaxation is straightforward.
A DC current is applied to the excitation coils at high
temperature, before the beginning of the quench proce-
dure, and switched off at t = tw. The relaxation is then
recorded for t > tw. The signal is measured before apply-
ing the excitation: this determines the zero baseline of the
measurement. After relaxation, the sample is re-heated
to the start temperature in order to check the stability of
the baseline. Thus, in the measurement, both the zero and
field cooled (FC) levels are known.

Recording the fluctuations is even simpler, at least in
principle: no field is applied, the spontaneous fluctuations
of the signal are just recorded from the end of the quench
procedure and during a long enough time to be able to
compute all the desired C(tw , t). However, as the system
is not ergodic in the ageing regime, the autocorrelation
of the signal cannot be evaluated from a single record,
as for an equilibrated sample. In order to compute the
autocorrelation function, an ensemble average has to be
done on successive equivalent records, each one initiated
by a quench. This does not only increase dramatically the
length of the experiment, but also the difficulties of the
acquisition, the ideal acquisition conditions having to be
kept during months instead of hours. This complication
has nevertheless an advantage: by averaging, it allows to
make the separation between a systematic spurious signal
and the signal of the fluctuations. In our results, the sys-
tematic signal is of the same order of magnitude as the
fluctuations themselves. It corresponds to the drift of the
SQUID due to the continuous decrease of the He-level, and
to the global response of the sample to the residual field
during the cooling procedure. The average of the signal
over records gives the zero, and the sample fluctuations
signal is then given by:

m(t) = M(t) − 〈M(t)〉 . (14)

The autocorrelation is then evaluated from its definition:

C1(t, tw) = 〈m(tw)m(t)〉 . (15)

In order to obtain a small statistical error, a very huge
number of records is needed. As each record length is
about few hours, the number of records is limited to about
300, and the average over the records is not enough to ob-
tain a satisfactory ratio between the statistical error and
the signal. As the autocorrelation function should evolves
smoothly for both variables, tw and t, the autocorrela-
tion function computed following equation (15) is aver-
aged over small time intervals of both variables:

Cavg(t0, tw0) = C1(t, tw)|tw∈[tw0±εtw0
], t∈[t0±εt0 ] (16)

with
εt = 0.05t � t. (17)

The criterion used (Eq. (17)) is a compromise between the
need of statistics in order to obtain a low enough statistical
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noise, and the requirement to keep ε as small as possible
to be able to capture as precisely as possible the non-
equilibrium dynamics.

3.3 Correlation offset

In principle, our experimental procedure, involving many
realisations of the same experiment, allows to compute
the autocorrelation function of the magnetisation follow-
ing its exact definition, and thus exactly. Nevertheless,
in reality, this would be the case only if external sources
of noise were negligible, not only in the correlation time-
scale under study, but also in the time-scale of one com-
plete record. This means that the external noise should
be controlled not down to 1 mHz as in our experiment,
but at least down to frequencies as low as few 0.01 mHz,
which is quite impossible. The result is that the computed
correlation C(tw, t − tw) contains an offset practically in-
dependent on t − tw but randomly dependent on tw.

As the setup is a calibrated thermometer, the temper-
ature can be extracted from the derivative of the χ(C)
curves in experimental units. In order to obtain the FD-
plot, this is not enough. For a normalisation of the data,
one needs to know the zero reference level of the response
and of the correlation. In the case of the copper sample
data, where the eddy currents producing the signal have
a finite and experimentally accessible lifetime, this cali-
bration is trivial: relaxation and autocorrelation functions
decrease to zero after a few seconds. In the spin glass case,
normalisation of the relaxation is simple since the zero
level and the FC level are determined during the mea-
surement. For the correlation, things are not so easy.

As seen above, at a given temperature, the correla-
tion curves for different tw are shifted between each other
by a random unknown offset. Nevertheless, it is possi-
ble to normalise the data by taking as the origin of each
curve the square of the measured value of the first point,
Cavg(tw, tw). Due to the elementary measurement time
constant, this term corresponds to an average over t − t′
about 10−2 s, i.e., a range of (t − t′)/t′ corresponding to
the stationary regime where all curves must merge. Thus,
the following quantity is computed:

C(t, tw) − C0 = Cavg(t, tw) − Cavg(tw, tw).

The “individual” offset is now replaced by a “global” one,
C0, which should apply simultaneously to any measure-
ment done at a given temperature.

Then, the best way to normalise our data could be
to extract C(t, t) from some other measurement, and to
be able to convert it in the “experimental units”. Neu-
tron diffraction experiments are now under way in order
to measure this quantity. C(t, t) can also be extrapolated
from high temperature measurements (above Tg) to low
temperatures (below Tg), or deduced from some other
quantities. Then a complete —but model-dependent— de-
termination of the autocorrelation can be obtained, allow-
ing to obtain the FD-plot. Anyway, even if the hypothesis
used to obtain this complete determination of the auto-
correlation were not realistic, some characteristics of the

FD-plot would not be affected. The temperatures, effec-
tive or not, are measured from the slope between relax-
ation and correlation in the experimental units. They will
not be modified by the normalisation procedure, whose
effect is just to suppress an offset.

4 Discussion

In this section, the results of the measurements done at
several temperatures in CdCr1.7In0.3S4 will be analysed
following the line of the method described above.

4.1 Raw measurement

Figure 5 displays the values of χ(tw, t)/χFC = 1 −
σ(tw, t)/χFC plotted versus C(tw, t) for several values of
tw and using t− tw as parameter. The three graphs corre-
spond to the three temperatures 10, 13.3 and 15 K. A first
observation is that a linear regime exists between relax-
ation and correlation for all the temperatures and waiting-
time investigated. This regime corresponds to the shorter
observation times. In the figures, the straight lines repre-
sent the FDT slope as calculated from the values of cali-
bration factor K and of the temperature: in this regime,
the relation between relaxation and correlation follows the
FDT. Thus, this regime can be extrapolated from the
shorter experimental observation-time down to the micro-
scopic time-scale. This extrapolation at short time should
reach the starting point of the FD-plot: C(tw, tw) cor-
responds to χ(tw, tw) = 0. As no long term memory is
observed in spin-glasses, C(tw, +∞) = 0 should also cor-
respond to χ(tw, +∞) = χFC , but the extrapolation to
this point is not obvious at all, as the (unknown) ageing
regime should be extrapolated.

4.2 Scaling procedure

The raw results show a waiting time dependence
which can be easily explained. The main theoretical
predictions correspond to the approach of the limit
tw → ∞, C(tw, t) = C (WEB). In this case, the sta-
tionary and the ageing parts of the dynamics evolve
on distinct time-scales, yielding a separation of both
dynamics. Experimentally, such a separation is not
accessible since the waiting times are finite. In order to
separate both part of the dynamics, the entanglement
between both part should be described. The simplest way
to combine these two contributions is to add them. For
instance, if one considers the relaxation σ observed after
a unitary field step at time tw:

σ(tw, t) = (1 − ∆)σstat(t − tw)
+ ∆.σageing (λ(t) − λ(tw)) (18)

In this equation, all the different σ are normalised to
unity. This relation is obviously valid in the limit of sep-
aration of time-scales, and is the most commonly used in
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Fig. 5. Raw results (full symbols) and ageing part (open symbols) deduced from the scaling analysis for the three investigated
temperature, T = 10, 13.3, 15 K. The straight lines have the FDT-slope obtained from the copper calibration for each temperature
of the formalisation bath, and start all from the point (σ/χF C = 1, C/C(t, t) = 1). The correlation offset is adjusted following
the “PaT hypothesis” (cf. Sect. 4.3.3) The different curves span the waiting times studied: ◦ : tw = 100 s, � : tw = 200 s, � :
tw = 500 s, � : tw = 1000 s, � : tw = 2000 s and, only for T = 13.3 K, � : tw = 5000 s, ◦ : tw = 10000 s. The last plot represent the
complete FD-plot for each previous measurement measurements reported on the same graph, the smooth curve corresponds to
equation (26), with an exponent B = 0.47.

theoretical approaches, but it is counter-intuitive as shown
by the following two thought-experiments:

– In the first one, a glassy system is quenched at a tem-
perature below Tg at time t = 0, and at t = 0+, a field
is applied. This experiment is usually though as being
equivalent to the “Field-cooled” procedure, in which
the field is applied before the quench. Experimentally,
the Field Cooled magnetisation is strikingly stable. In
the additive formulation, the predicted behaviour is
the following: first, an instantaneous variation due to
the ageing part, and then a slow variation up to the
FC value, as the system approaches equilibrium. Thus,
the field-cooled magnetisation should not be as stable
in time, as what is observed experimentally.

– The second problem arises when thinking about some
finite tw experiments, but with (very) huge time differ-
ences, t → ∞. Ageing and stationary parts are usually
described as stretched exponential (with characteristic

time of order tw) and power-law with small exponent
respectively. For finite tw, after a finite time, the only
remaining contribution to the dynamics would come
from the stationary part, and FDT would be recov-
ered.

If the time-scales are not well separated, it seems intu-
itively that the two different contributions must be more
entangled than the result of a simple addition. Another
(more realistic) way to mix the two parts together is
to consider a “multiplicative” combination, which can be
written as:

σ(tw, t) = [(1 − ∆).σstat(t − tw) + ∆]
× σageing (λ(t) − λ(tw)) . (19)

In the limit of time-scales separation, equations (18)
and (19) are equivalent. Moreover, it is easy to show that
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Fig. 6. Relaxation (Top) and autocorrelation (Bottom) func-
tions recorded at 13.3 K. The different curves correspond, from
bottom to top, to tw = 100, 200, 500, 1 000, 2 000, 5 000 and
10 000 s. In insets, the respective ageing parts, deduced by the
scaling analysis developed in Section 4.2.

the problems raised in the two cases discussed above dis-
appear. Thus, as this formulation is at least as justified
as the “additive” one, and seems less counter-intuitive to
the authors, it will be preferred in the following.

Experimentally, separation of timescales is not accessi-
ble since the waiting times are finite. In order to separate
both part of the dynamics, a scaling analysis, as described
by equation (19) and illustrated by Figure 6 is applied on
both relaxation and correlation measurements, within the
following constraints:

(i) In the relaxation, the stationary part is described by
a power-law decay; its exponent α is extracted from
the decay of the noise power-spectra measured on the
same sample, at the same temperature, in the quasi-
equilibrium regime obtained after a very long waiting
at the working temperature (typically 15 days) [21].

(ii) In the non-stationary regime, the effective time is given
by λ = t1−µ

1−µ . The value of the sub-ageing exponent,
i.e., µ, is in the range 0.85−0.9 [16]. µ and the relative
amplitude of the ageing part, i.e., ∆, are chosen to
obtain the best rescaling of the relaxation curves once
the stationary part has been subtracted.

(iii) The stationary part of the autocorrelation function is
then evaluated using FDT and the stationary part of
the relaxation. The ageing part of the autocorrelation
can then be deduced from equations (18) or (19).

The resulting FD-plots are displayed in open symbols
in the diagrams of Figure 5 for the ageing part (by con-
struction, the stationary part follows the FDT line). For
all the investigated temperatures, the ageing part starts
with a slope very close to the FDT one. This may reflect
the imperfections of our decomposition between the sta-
tionary and the ageing parts. Using the additive scaling,
this effect is even more pronounced.

The multiplicative scaling has a main drawback: it can
not be used without the knowledge of the amplitude of
the concerned physical quantity. As previously discussed
in Section 3.3, for the correlation this value must be deter-
mined indirectly, and is model dependent; thus the scaling
is also model-dependent. The additive form of the scaling
can be applied without any amplitude parameter. How-
ever, the dependence of the scaling on this parameter is
weak, the results obtained from different models are in-
distinguishable from each other.

The ageing part of the correlation function is found
to follow remarkably the scaling-law used for the ageing
part of the response, resulting in a very weak systematic
tw-dependence of the FD-plots. Thus, the equation (18)
(or (19)) can be written for the correlation, with the am-
plitude parameter ∆ replaced by qEA, the usual Edwards-
Anderson order parameter [22], which is defined as the
remaining part of the autocorrelation for an equilibrated
spin glass after an infinite waiting time. As a consequence,
the FD-plots are determined by a single parameter, the ef-
fective time difference: the limit FD-plots, corresponding
to the ideal separation of the stationary and ageing regime
is independent of the age of the system, as supposed in
theoretical works.

4.3 Comparisons with some models predictions

Depending on the models, some remarkable features of
the FD-diagrams are predicted. The analysis of the FD-
diagrams may help to check the validity of the models used
to interpret the glassy behaviour found in CdCr1.7In0.3S4.

4.3.1 Domain growth

In domain growth models, as in any replica symmetric
models, the FD-plot should be quite simple in the limit
of time-scale separation. For an infinite waiting time tw,
the quasi-equilibrium relaxation should go down to zero.
A FDT-behaviour should then describe all the response,
governed by the single-domain response and the scaling
approach used in this paper should give (qEA �= 0, ∆ = 0).
Thus, the remaining part of the diagram, an horizontal
line, should correspond to an infinite effective tempera-
ture [23,24]. This description does not coincide with the
FD-diagram shown in Figure 5, even after the separation
of time-scales obtained by scaling.

Anyway, a more refined approach as in [25] is not
excluded, in which dynamics is described introducing a
crossover region in between the quasi-equilibrium region
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Table 1. Values of Teff as obtained in an 1-step replica
symmetry breaking scenario and the corresponding Edwards-
Anderson order parameter q1−step

EA (cf. Sect. 4.3.2). The values
of qPaT

EA are deduced from the PaT ansatz (cf. Sect. 4.3.3).

T [ K] Teff [ K] q1−step
EA qPaT

EA

10 28 ± 6 0.65 ± 0.05 0.63
13.3 50 ± 10 0.45 ± 0.05 0.37
15 80 ± 20 0.36 ± 0.07 0.21

(C > qEA) and a purely ageing region characterised “dy-
namical order parameter” qD for C < qD < qEA. This
approach could explain the “early” departure from the
FDT regime. This departure should be tw-dependent, but
this dependence may be hidden by a too small range of
waiting times explored (as well as a too weak exploration
of the ageing regime).

4.3.2 1-step replica symmetry breaking

In CdCr1.7In0.3S4, one of the best realisation of an
Heisenberg spin-glass, it has been shown that the scenario
of the chiral spin glass could be relevant [26,27]. Such
model belongs to the 1-step replica symmetry breaking
(1-RSB) models family [28–30].

In 1-RSB case, the ageing regime is described by a
unique effective temperature, finite and strictly greater
than the thermalisation temperature. By considering a
normalised FD-plot, it is easy to show that the value
of qEA can be deduced from the value of T , Teff and
γ = 1−∆

∆ , the ratio between the stationary and the ageing
part of the relaxation, which is experimentally accessible:

qEA =
1

1 + γ · T
Teff

. (20)

As the experimental setup is a calibrated thermometer,
it allows an absolute determination of the temperatures.
The determination of T and Teff extracted from the slope
of the stationary and the ageing part respectively allows
the complete determination of the offset Co. The obtained
values of Teff and qEA are reported in Table 1. The separa-
tion by scaling between stationary and ageing part being
far from perfect, the uncertainty on the determination of
Teff , and consequently on qEA is quite large. The choice
of a scaling procedure also influences the results (the pre-
viously reported value for Teff ≈ 30 K for a thermalisation
temperature of 13.3 K was obtained by an additive scal-
ing analysis of the data [31]). The results of Table 1 can
be compared with the results of simulations done on a
weakly anisotropic spin glass model by Kawamura [32]. In
this work, it was found that χ depends linearly on C in
the ageing regime. The effective temperature was found
to be independent of the temperature of the thermalisa-
tion bath. This independence does not appear in our data,
but, maybe, it can be due to the extremely low anisotropy
used in the simulations. CdCr1.7In0.3S4 is known to be an

Heisenberg spin glass with a non negligible anisotropy,
which as been found to be five times stronger than in the
canonical AgMn spin glass.

4.3.3 Continuous replica symmetry breaking

In continuous replica symmetry breaking (∞-RSB) mod-
els, as the Sherrington-Kirkpatrick (SK) model [33,34],
the Parisi order parameter is a continuous function be-
tween 0 and qEA [35,36]. Links between statics and dy-
namics imply that the corresponding effective temperature
is a smooth and not trivial function of the autocorrelation:

1
Teff

(C ) =
1
T

∫ C

0

P (q)dq. (21)

Then there is no trivial relationship between qEA and
the measured quantities. It is nevertheless possible to to
progress further if the studied compound is a canoni-
cal spin-glass. In these systems, the FC susceptibility is
purely paramagnetic at high temperature, following equa-
tion (22), and below Tg, its value is temperature indepen-
dent:

χFC(T > Tg) = C(t, t)/kBT (22)
χFC(T < Tg) = C(t, t)/kBTg. (23)

The lower the concentration of magnetic ions in the
canonical sample, the smaller the probability of spins
clustering and the better the validity of the above rela-
tions [37]. Thus, the value of C(t, t) can be straightfor-
wardly derived from susceptibility data. The canonical be-
haviour is also observed or imposed in theoretical models,
and known as the Parisi-Toulouse Hypothesis [38]. This
“PaT” hypothesis implies that the FC response is tem-
perature independent, as observed in diluted spin glasses.

In samples with high concentration in magnetic sites,
deviations from the simple canonical behaviour are ob-
served, as well as the formation of clusters of spins.
At low temperatures, the response of single spins is no
more observed, but the response of some rigidly cou-
pled groups of spins. For macroscopic quantities, this is
equivalent to the response of fewer renormalised spins.
In CdCr1.7In0.3S4, which has a mean coupling constant
strongly ferromagnetic (Θ = 100 K [17,39]), this cluster-
ing may explain that at low temperature, but above Tg,
the compound behaves as a compound with antiferromag-
netic average of couplings. A standard Curie-Weiss law de-
scription around 30 K gives a mean coupling characterised
by Θ ≈ −9 K [40]. Such a description, with a non-trivial
Θ(T ) variation, should be associated with a non-trivial,
but still smooth, function C(t, t; T ). As informations on
the variations of C(t, t; T ) are lacking we propose to con-
sider that relations 22 and 23 are still valid in the general
case. This is a strong hypothesis since it amounts to con-
sider that the temperature variation of χFC is due only to
the temperature variation of C(t, t; T ). One can write:

C(t, t; T )
kBT

= χFC(T < Tg)
T ∗

g

T
. (24)
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A smooth behaviour of C(t, t; T )/kBT around Tg can
be obtained using T ∗

g = 17.2 K in the formula.
This ansatz gives an access to the unknown offset of

the autocorrelation: i) the starting point of the FD-plot,
corresponding to [C(tw, tw; T ); σ(tw, tw)] is completely de-
fined, ii) C(tw,∞; T ) corresponds to the point where the
FDT line reaches the level given by χFC(T < Tg)

T∗
g

T . Then
the FD-graph can be plotted in reduced units as displayed
in Figure 5d. In this plot, the starting point (C = 1) and
the end point (C = 0) are temperature independent. Fur-
thermore, it has been shown (for some mean field models,
and approximately for the SK model) that not only these
points but also all the ageing part of the plot is temper-
ature independent [41]. It is conjectured that this can be
still valid in short range models [42–44]. This property
is particularly interesting: it allows, by measurements at
several temperatures, to obtain the whole “master” curve
describing the ageing behaviour, even if each set of data
spans a limited portion of the correlation. This feature
has been already used to obtain the master curve from re-
sponse data, assuming that the separation of time-scales
is reached in usual susceptibility measurements [45,46].

In the SK model at small C, it can be shown that the
master curve should behave as [43]:

χ(C) =
√

1 − C. (25)

For correlations close to zero, the slope of the FD-plot,
X(C) =

∫ C

0
P (q)dq, should asymptotically reach zero, as

P (0) is known to have a finite value in the continuous RSB
case.

Equation (25) can be generalised by allowing any ex-
ponent different from 0.5:

χ(C) = (1 − C)B . (26)

Such a curve can be easily superimposed to our experi-
mental results. Using a coefficient B = 0.47, a single curve
can describe the ageing regime at all the investigated tem-
peratures and for the data close to qEA(T ). Both the value
of qEA(T ) and the effective temperature close to qEA seem
to be well described by equation (26).

For C � qEA, at each temperature, the experimen-
tal points deviate from relation 26. This cannot be due
only to the smaller signal to noise ratio at the longest
timescales, since the effect seems to be more pronounced
at the highest temperature, where the sample signal is the
strongest.

A possible explanation is that the scenario with contin-
uous replica symmetry breaking should be associated with
a continuous distribution of timescales describing the sys-
tem. As the limit of separation of timescales is not reached
in our results, the ageing regime itself is a combination of
many timescales. The scaling procedure allows to extract
the stationary part, but not to reach the limit where a full
time-scale separation is achieved.

A way to reach the limit could be to iterate the scal-
ing procedure on the ageing data to separate the “ageing
timescales”. The ageing regime can be considered as a
pseudo-FDT one, with a temperature equal to Teff (qEA).

Fig. 7. Scaling of the ageing parts of the FDT-diagram follow-
ing equation (27). The straight line shows the result predicted
by this equation.

Such a work on the available data is however hopeless, as
the separation between stationary and ageing part seems
obviously already far from perfect.

A scaling can be deduced from equation (26) [43],
which, using Φ = 1

1−B , can be written as:

χ · T 1−φ =

{
A[(1 − C)T−Φ]B for C ≤ qEA(T ) ,

(1 − C)T−Φ for C > qEA(T ) .
(27)

If a power-law can describe the ageing dynamics,
then all the scaled data should merge along a single
line. The best result is obtained for B = 0.5, but the
cloud of points remains very broad, and is not well de-
scribed by the predicted straight-line in the log(T 1−Φχ)
vs log

(
T−Φ(1 − C)

)
diagram.

5 Conclusion

In this paper, it has been shown that the experimen-
tal setup developed in this work can be considered as
an absolute magnetic thermometer. However, to get rid
of uncertainties on the value of several elements of the
setup, the setup was calibrated by measuring the mag-
netic fluctuations and response of a high conductivity
copper sample thermalised at helium temperature. This
calibrated thermometer was used to determine the out-
of-equilibrium properties of a spin-glass below the glass
transition. The autocorrelation function of the sponta-
neous magnetic fluctuations of a well characterised in-
sulating spin-glass was investigated in the deeply non-
stationary regime. Its waiting time dependence can be
described by using the same scaling as for the response
function. The FD-plots clearly confirm that the station-
ary dynamics observed at the shorter timescales can be
considered as a quasi-equilibrium once, as the fluctuation-
dissipation relation between autocorrelation and relax-
ation obeys the fluctuation-dissipation theorem. The re-
sults show clearly that the asymptotic regime, with full
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separation of timescale is not reached. Certain Hypothe-
ses on the dynamics are made in order to compare the
results with model predictions. The deduced scaling anal-
ysis allows to extrapolate the experimental results to the
limit used in theoretical studies of weak-ergodicity break-
ing models.

The experimental results obtained on CdCr1.7In0.3S4

differ qualitatively from the predictions of any domain-
growth model.

The experimental data allow interpretations that are
rather consistent with predictions from the two replica
symmetry breaking models under study. As long as the
autocorrelation cannot be determined completely, both
models can be relevant, giving slightly different results
concerning the value of qEA. An independent determina-
tion of the characteristic magnetic moment of the clusters
as a function of temperature is needed in order to resolve
this ambiguity .

The possibility of analysing the experimental results
on the basis of 1-step replica symmetry breaking con-
firms that, at first sight, the chiral model developed
by Kawamura could be the more relevant one for the
CdCr1.7In0.3S4compound with low anisotropy, supporting
the conclusion from D. Petit and I. Campbell on this sam-
ple [26]. However, the scatter of the data is such that one
cannot reject definitely an interpretation inspired by the
mean-field models developed for Ising spin-glasses.
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a critical reading of the manuscript.
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